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Using statistical mechanical perturbation theory, the second-order average
current density response is calculated for magnetic field-free classical plasmas.
A dynamical fluctuation-dissipation theorem is then derived, thus estab-
lishing a connection between triplet microscopic current-current correlations
and quadratic response functions; it also lecads to a static fluctuation-
dissipation thcorem which provides a dielcctric description of the equilibrium
ternary corrclation. A comparison of the latter with its expansion in terms

of the Maycr pair correlation clusters is discussed.
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1. INTRODUCTION

The conventional fluctuation-dissipation theorem (FDT) establishes a
relation between the equilibrium correlations in and the linear responsc of
the same system to a small cxternal perturbation.™ In particular, the per-
tinent correlations are doublet correlations, i.e., correlations connecting
physical quantities at two different space-time points. A specialized form of
the general dynamical FDT is its static variant, which provides information

about the pair correlation function in thermal equilibrium.®
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The response of a system, in general, is, however, not restricted to be
linear. In the family of nonlinear response functions, second-order ones are
the simplest objects and their properties and explicit functional forms have
been studied in plasma physics, crystal physics, and nonlinear optics.® That
such a quadratic response function should satisfy some kind of a fluctuation-
dissipation-like theorem is a rather obvious expectation. Indeed, even a
cursory reflection over the derivation of the linear FDT should suggest
a conncction between second-order response and triplet correlations.

The present paper is devoted to the cstablishment and examination of
this quadratic fluctuation-dissipation theorem, whose existence, thus, is not
unexpected. The relation and its derivation are, however, far from being a
trivial exercise in perturbation theory. Of special interest is its static (dc) limit,
which leads to a relation for the threc-particle (ternary) correlation function
in thermal equilibrium in terms of the static quadratic response function. The
linear FDT already possesses a noteworthy “order-raising” property: When
applied to quantitics calculated in the “plasma approximation, i.e., by
expanding in the small parameter (ne?8)'/% ¢*8 (B is the inverse temperature),
the FDT expresses (n + 1)th-order (in particular, first-order) pair correlation
functions in terms of the nth-order (in particular, Viasov) response functions.
A similar, though enhanced feature prevails in the present case: The “order-
raising” now operates by two units, thus providing a connection between the
(n + 2)th-order (in particular, second-order) triplet corrclation function and
the nth-order (in particular, Vlasov) quadratic response.

FDT relationships between higher-order correlations and transport
cocflicients have also been cstablished by Friedman ef al.*® for systems (such
as partially ionized gases and electrolyte solutions) under homogencous and
stationary perturbations. The role of the higher-order correlations under
these circumstances is either to modify the dynamics of simple collisional
models or to alter the relationships between diagonal and off-diagonal (Hall
components) matrix elements of thc conductivity. In contrast, our analysis is
restricted to a consideration of diagonal longitudinal (with respect to the
wave vectors) clements only and assumes that the driving perturbations are
functions of space and time. We therefore obtain wavevector- and frequency-
dependent FDT relations which are modcl-independent. Our analysis never-
theless shares onec common feature with that of Friedman et al. : Both their
and our approach have independently established that the second-order
longitudinal projection of the wavevector- and frequency-independent
conductivity is identically zero.

While in this study we restrict oursclves to a consideration of fully
ionized plasma, we do this for the sake of concretcness and in order to deal
with an easily tractable model; it should be understood that our conduc-
tivity-equilibrium correlation FDT relations and the ensuing dielectric
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formulation of the ternary correlation function are entirely valid for weakly
ionized plasmas and related systems. The collisional model dependence
arises only when one seeks more detailed descriptions of the correlations,
obtained from an cvaluation of the transport coeflicients from specific
kinctic equations. The order-raising property of the so-called static FDT, for
example, is modcl-dependent; so is the lowest-order Mayer cluster expansion
for the ternary corrclations function obtained by evaluating the dielectric
functions from the Vlasov equation; both of thesc approaches are based on
an explicit expansion of the collision operator in e?, the plasma coupling
parameter.

There is no cxternal magnetic field in our model and we consider a
longitudinal (Coulomb) field only as the perturbation. Therefore there is no
magnetic ficld at all in the system and that leaves two independent elements
in the three-dimensional 3 X 3 x 3 matrices of the conductivity tensor
G.ay [see Eq. (26)] and related objects.

This remainder of this paper is divided into two main parts. Section 2
concerns itsclf with the development of nonlinear dynamical fluctuation-
dissipation thcorems, while Section 3 considers their static limit and sub-
sequent application to equilibrium statistical-mechanical calculations of the
ternary correlation functions. More precisely, Section 2.1 describes the
unperturbed state of the magnetic field-free plasma. In Section 2.2, we let
the cquilibrium plasma be driven by a small time-dependent scalar potential,
and we determine the subsequent average second-order current density
response using the well-known statistical-mechanical perturbation-theoretic
method of Kubo.¢4-¢ In this method, onc essentially follows the evolution
of the first- and second-order Liouville distribution functions; the average
second-order response, which is of intercst here, is then calculated by ensem-
ble-averaging the microscopic current density over the second-order distribu-
tion function. This result and Ohm’s law for the external conductivity
(response function which connects the induced current to products of the
driving clectric field) are then used in Sections 2.3 and 2.4 to establish
dynamical FDT relationships between the quadratic external conductivity
and triplet correlation of the microscopic current densities in the equilibrium
state. Our results arc presented in a variety of forms. For example, the
EDT’s (33) and (48) each relatc a single current correlation to a combination
of three conductivities. Such time-domain and frequency-domain representa-
tions are seen to be manifcstly symmetric under interchange of their two
space-time (or cquivalently kw) variables. Beyond this, we shall see that
FDT relations like (48) and (66) exhibit a higher triangle antisymmetry for
three (kw) defined by Egs. (40). We exploit this symmetry in Section 2.4 to
extricate the current correlation function from under the integral equation it
originally is associated with, thus cnabling us to derive explicit relations for
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it. In Section 2.4, we introduce new internal response functions, paving the
way for Section 3, where, in Section 3.1, a simple relationship is then
established between the equal-time ternary charge density correlation func-
tion and a single static (zero-frequency) internal response function. This
result is then used in Section 3.2 to establish the FDT for the ternary correla-
tion of equilibrium statistical mechanics. Finally, in Section 3.3, we compare
these results with the relations provided by the Mayer-type cluster expansion
in equilibrium statistical mechanics and by BBGKY-type kinetic equations
for the connection between ternary and binary correlation functions.

2. NONLINEAR RESPONSE AND THE DYNAMICAL
FLUCTUATION-DISSIPATION THEOREM

2.1. Description of the Unperturbed System

Consider a classical electron plasma in the large but bounded volume V.
For the present, only the N electrons (each of mass m and chargee = - | e )
are assumed to be dynamical; the N/Z positive ions (each of mass M and
charge Z . e ), which are present to provide a stabilizing background, are
considered to be nailed down to fixed spatial points.?

The microscopic charge and current densities at the space-time point
(r, t) are respectively given by

plr 1) = ¢ 3. 8(r — X(1) )
i) = e 3 vilt) 8 — x(1)) @
=1

with spatial Fourier transforms?

o) = e Y expl—ik  x,(1)] ©)
i=1

?

3 Our theory can be casily extended to take account of dynamical ton motions [e.g., see
Eq. (78)]. In this more realistic plasma model, the ions and electrons are then assumed to
cocxist in thermal equilibrium (7, = 7,).

4 We adopt here the Fourier transform convention:

FK, w) — J'w dt J"Vdar{cxp[i(wz — kDL f, 1)

-0

J@0 =Ny f (dew: 2m)}explitk - v - w0} f(K, )
k -
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i0) = e 3 vilt) expl—ik  x,(1)] )

where the x; and v, are the particle coordinates and velocities, respectively.
The unperturbed state of the electron plasma in the infinite past is
characterized by the macrocanonical distribution function (normalized to
unity):
QO = (exp —BH“”)/J dx dp exp —BH® (5

where p; is the /th particle momentum,

12)

N N+(N
dedp =] [] d%:d*;
i1 j=1

B! is the temperature in energy units, and

N N NiZ
HO = Z (p32m) + }e? Z du(X; — X;) + Ze? Z Z (X, — X;)
Fe==] Zi‘ié-jl i=1 j:-1
NIZ
A Z du(x; — X;) (6)
i1
iA

is the unperturbed Hamiltonian including electron-electron, electron-ion,
and ion-ion interactions. For a partially ionized plasma (which is not of
interest in this paper), H® should of course be cxtended to include both the
kinetic energy contributions from the neutral constituents and neutral-
neutral and neutral-charged-particle interactions. In the sequel, we shall see
that the average current density response is independent of any such modi-
fications in H® (in so far as A9 js explicitly independent of the perturbing
field) and depends explicitly on the form of the Hamiltonian H'Y for the
interaction between the plasma and thc external electric field perturbation.
Since HY is unaffected by the presence of neutrals [see Eq. (I11) below], it is
clear that the conductivity-equilibrium correlation FDT relations of this
paper will have the same form, whatever be the (nonzero) degrec of ioniza-
tion.

2.2. Nonlinear Response Theory

Following the well-known statistical-mechanical perturbation-theoretic
method of Kubo, we analyze the second-order response of the plasma to the
weak time-dcpendent external scalar potential

$m0=WW§%MﬂWKW) (7)
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We assume that the perturbation is sufficiently weak to allow one to
expand the relevant quantities in powers of the perturbing field.
The Hamiltonian H and the Liouville operator

. Y eH @ ¢cH ¢
L= —ilH..] =i ,; ( ox, op;  op; 8xi) (®)
are, at most, perturbed to first order in </§, 1e.,
H = H9 - HO )
L = Lo W (10)
where
H®() == (1/V) Y, ¢ult) p (1
k
and
L) = —(@fV) Y. $u)lpoy -] (12)
k
The subsequent perturbation of the Liouville equation
6Qjet = —ilQ2 (13)
for the distribution function £2 results in the formal solution
0 = Qo + 0w -+ foltd + .- (14)
where
QW) = - fc dr(exp —iTL®) LW(z — 1) QO (15)
0
QW) = - J dr JJL d7’ (exp —irLW) LYt — 7)
0 0
X (exp —ir'LW) LW(t — 7 — 1) QO (16)

Further development of the expression (15) for 2 and subsequent ensemble-
averaging of the microscopic current density (4) over 2 leads to the well-
known average first-order current density response and linear conductivity.?
it is the development of £2* with is of interest in this paper.

For this calculation, we first observe from (12) and (5) that

Lot — 7 — ) Q0 = (V)Y bt — 7 — 7)pocr), Q]
= (—IBRUV) Y, it — 7 — THH®, p_y(1)]
Z
= (BRUIY) Y KgkiFir(t — 7 — ) jet) (A7)

5 See, for example, Ref. 1(c), p. 580, Eq. (5.11) with # = 0.
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where k” is the unit wave vector and E,- = —ik"d,~ . Since
Jr) = (exp itL®) ji(0) (13)
satisfies the ““Heisenberg’ equation
di(D)fdt == IL"y(1)
it follows that
(exp — i7" LOY LIV(f -- 7 77) 20

= (iBRO/V) ) kik/Exr(t — 7 — 1) jues(t — T) (19)
&

Continuing the calculation according to (16) and using (12), one has that

LVt — r)exp —ir'LO) LWt — 7 — 77) QO

e S KB — 7= ) Gt lpoi1), 0t — 7))
k" k"
iBO©® k;;k K .
i Y Bt - 1) Bt — 7 — 7
V2 k%ﬂ k k k ( )
X A{iBky joxa(t) jowmg(t — 7') b= [pok(t)s joxmu(t — )]} (20)

so that use of the Heisenberg time-shifting property (18) in the subscquent
operation of exp(—irL) on (20) ultimately leads to

(0) He”le” ot at’
Qe gy = 5'82 Yy, k“:,“k” ’ dt’ ‘ dt" By (t') B (t")
K’ k7 d e Y -»
X APk Jolt)) Jors(t”) — ilpo (), Jows(t)]} (21)

where ' =t -—7, 1" =1t — 7'. The two times ¢ and ¢” arc physically
equivalent: thcrefore a syminetry with respect to prime~double-prime inter-
change should prevail. In order to make the symmetry manifest, the order of
integration should first be reversed as follows:

(0} L7, 7 -
ey = B ¢ e f ar' [t B (t) Bt
K k" ‘

X ABKS Jowolt) Jokmg(t") — ilpoi(1)s Jowre(t )]} (22)
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Then, upon interchanging the ¢’ and ¢” variables, making the appropriate
interchanges among the (dummy) tensor indices, and combining the resulting
expressions with (21), one obtains

Q2(1)
ZQ(O) 13 ~t
B s ok [ [ Ber) Bedt') et o)

TH2
2V e Ve

iQ(O) k“,k,,k:” t ’ t’ n ’ A ”n ’ . "

e A [ ) Bt )
iBOO .k, ’k "

T Tope Z

j dt’ j dt” Byro(1) B (1) poar(”)s jwrs(t)]
(23)

We are now ready to calculate the average second-order current density
response according to

k', k"

i = [ dx dp Q. (24)

It is convenient to rewrite (23) in terms of the relative time variables 7' = ¢ - ¢/,
7" =t — t’. Then, upon putting this latter into (24) and exploiting the
stationarity of the equilibrium system, one obtains an expression which is
most conveniently formulated as an integration over the entire time domain
by introducing appropriate step (®) functions. Thus the average second-
order currcnt density response becomes

{0
_113;_2 Y kJSky f_ dr’ f_ d" Bt — 7') Een(t — ") O(z") O(z")

K’

X Bk, K< Jwa(0) fars(7" — 77) i T

k/l
— 22 paO), fouol® — N ol D OG" — 7)

— 2 Lok (O), el — T ile D O — ) (25)

where the {--->'® brackets denote ensemble-averaging with respect to Q©®
and kK" = k — Kk’ in virtue of the homogeneity of the system.
2.3. Dynamical Fluctuation-Dissipation Theorems

The average second-order current density response is connected to the
external driving fields £ through the quadratic external conductivity

A (2) v
Sk, K75 7', 7")
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defined by Ohm’s law'®:

k1))
— L] [ B ) Bt - ) Bt — ),
K’ L& v o_
K"~k — K (26)

Comparison of Egs. (25) and (26) then leads to the primitive form of the
quadratic theorem (FDT):

O, K5 7, )
= (3/2‘/) (') O(") kABK ki Goua0) Joymp(m" = 77) i (7O
— (kg7 Kp-w(0); jwrslt” — 7] jAT N (7" — 7)
— (ikg'[k"Xp.xr(0), joas(™" - )] A7) O - 7"); (27a)
where again k” = k — k" and where the scalar conductivity
B K7, ) KKK K T 1) (27b)

obviously projects out the longitudinal (with respect to k) response to the
longitudinal excitations £y E,~, . The Lh.s. of (27a) is manifestly symmetric
in prime-double-prime interchange [were it not, only the symmetric projec-
tion would enter in (26), which thus could be redefined as ). So is the rhs
thanks to the manipulation performed earlier.

An alternative, more compact form of (27a) can be derived with the aid
of a Poisson bracket relation which is exhibited in Appendix A:

<[P---k'(0)> Joxs(m — 77)] jky(TI)>(0)
= —ipky Gos0) jowr (7 — 77 G T
— Lp-w(0), JiAT)] Jowrs(r" — TPHO (28)

Noting also the counterpart of (28) formed from prime-double-prime inter-
change, the transformed form of (27a) becomes

ek, k" 7, 7"
= () O(")iB/2V )k {(Ki/k K (0), ja(T)] Jo wral7’ — 7O O(" — 7')
‘i (Ks' [k )P (0); Jiy(7")] juarp(” — 7)) O(=" — 7")} (29)
Invariance with respect to spacc reflection requires that

6K, k" 7, 77) = &B(—K', —Kk", 7, ") (30)
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with similar relations for the longitudinal projections of the correlations of
(27a) and (29). The uscfulness of this symmetry rule will soon become
evident,

Our next objective is to eliminate the unwicldy Poisson bracket terms
entircly from the theorem and derive a rclation for the triplet current cor-
relation alone. In order to accomplish this, we first evaluate FDT relations
for 6®(k', —k; 7" —7', 7") and 6k, k", 7/, " —7"). Thus upon noting
that a typical correlation term containing p undergoes a change in sign under
time reversal, e.g.,

Ao (0)s w7 - )l -7 = —Lpk(0), jks(T" — T W i TV

one can show that

s, —k; " — 7', 1) + 6O(—k, Ky 7, 7 — 7
- ;’i 6 o O, forsls’ — 7] e D ) O") 6" —7')
A Lo O), sl ~ T D O) OG") O - 7]
B 10, i el DO B(—7) OG") OG" — )
IO, o] i e () O(—+) O — 7 &

so that the combination of Eqs. (27a) and (31) gives
O, K" 7, 77) - GOK, —K; 77— 7, 7)) — §O(—k, K" 7,7 — 1
2
K aa0) ol — ) oD 6() ()

2K (o0, ke s O(—7) OG") O — =)

+ Lpx(0), Jws (™)) Joar (TP B(7) B(—7") O(7" — 1")} (32)

Successive multiplication of (32) by &(=") and @(-r”) then serves to project out
only those terms which are nonzero for 7" > 0, 77 > 0, namely

6(2)(k;’ kll; T/, TII) . 6(2).(1(’, __k; TI/ _ T’, 7_//) @(T’)
o 6'(2)("_k, k”; T’, T’ _ T”) @(Tll)

w B Kl Joaeo®) sk OO O,
K —k—K (33)



Nonlinear Fluctuation-Dissipation Theorem 97

This is now the desired result which, however, can be cast into a morc useful
form by taking the temporal Fouricr transform and introducing

YK, K" ', ") — 62K, k"; o, w")

— 7 duee 6 ks o )
. ! dp dy(e” + p) 6P(-K K o' - popn)  (34)
O, K5 o'y ") = Kok Qs (K, K'; o, @) 3

Qus (K, K o, 0") 80" + " — w)
= (HAm V) ol —@) Jows(w') Joxmy (@) (36)

with 8.(w) = $d(w) == (i127) P(l/w), allowing us to write

Yk, k" o, w")

= - 182 l

i
v -,

dp | dvdfe — w8 -v) QKK gy ) (T)

-xX

We observe that (27b), (30), and the reality condition

A(Z)(l\/ k// (A) w ) _ A(")X( l\ l\ —(JJ/, '(,U”)

/LlV ‘YMX

combine fo give
Rk, K o, w") = 6B K - w', —w”) (38)

Clearly, the dynamical FDT (37) satisfies this last parity rule.

We note herc that the rcal part of 62 has odd parity with respect to
simultaneous sign reversal of w’ and «”. This, together with the fact that the
average current density is a bounded response to the bounded driving E
field, assures us that the real part of ¢‘® is identically zcro in the dc limit
o' = " = 0. 1t follows from symmetry considerations [scc Ref. 4(b), c.g.]
that the corresponding wavevector- and frequency-independent quadratic
conductivity is identically zero. Their result is compatible| with ours if one
cxercises care by going first to the zero-freqcuncy limit and then to the zero-
wavevector limit {sec Eqs. (61) and (B.15) for the cxplicit k-dependence].

In the sequel, the superscript® will be omitted most of the time without
any danger of confusion.

A final transformation which justified the nomenclature in the FDT is

822/6/2/3-3
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obtained by taking the real (dissipative) part of ¥. Then, we observe from
(36) that the current correlation tensor Q,,, undergoes no net change in sign
under simultaneous microscopic time reversal (w' —> —w’, @”-> —w”,
w— —w) and space inversion (k' — —k’, k" — —k”, k-» —Kk), so that
0.5, (K', k", w', w") and, consequently, Q(k’, k”; w’, w”) must be real. The
real part of (37) is therefore®

){[/(k/’ k/l; (UI, (JJ”

B :

I ron. AN /92 ™ * ) Q(k,, k”, H“s V)
- 4Q(k,k,w,w) IZ‘IT—ZPPJ_wd'U‘J‘_de“_ A

(@ — W — v
(39)

and it is hereafter understood that k” = k -- k'.

2.4, Solution of the Integral Equation

Equation (39) constitutes the closest analog of the linear FDT: both
relate the dissipative part of a response function to the dynamical equilibrium
correlations of microscopic current densities.” The important difference,
however, is that in the nonlinear case, Q appears in combination with its
double Hilbert transform. Therefore, in order to obtain an explicit expression
for Q in terms of the response function, the resulting integral equation has to
be solved. This is the purpose of the present section. First, we note that the
current correlation function is invariant—up to a sign change—with respect
to rotation on the triangle formed by the ““four-vectors” (k, w), (k/, o),

(k”7 w”)» i‘e',
oK', —k; —o', w) = —Q(K", k"; o', ") (40a)

= Q(_ks k”; w, —a” (40b)

The Hilbert transform operation, however, violates this invariance; thus the
function ¥’ does not satisfy a similar symmetry rule.
One can, however, form the symmetrized combination

YK, k" o, o
= H¥Y'K, k" o', 0) — V'K, -k, ~w, w) — F(—k, K", 0, —w")}
(41)
which does possess the triangle antisymmetry exhibited by Q.

¢ Prime and double-prime symbols arc used (for example, as follows: ¥’ = Re ¥,
¥ = Im ¥) to denote real and imaginary parts.
7 For the linear result, see, for example, Ref. 2(e), Eq. (117).
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Proceeding, we have from (34) that

6'k', —k; —w’, w)

NI'—"

[}]/(k/ kl/ U.) (U”) _ &I(kl k”, w (l)”)
_ l A/(_k k//_ w _w//)
2 g 2 2 2

o P f 5, —K; gy @ = p)

-j-‘—PJ’ w”"’f 5k K o — g )
o “42)

whence and from (42) it can be shown that

Yk, —k; ~w', w) = 6'(k', —k; —o’, w) — ; 6"k, k’; w', w")

“+ = 0( k, k" w, —w")

1 ® die s e,
_r.z;PJ_xF_w,o(k,k,p,w 73]

.1 Todp
T Pl R SR K — ) (43

and
Y'(—Kk K w, —w") = 6 (—k, k"; w, —") -+ ;6'(1;’, —k; w, —w’)

% 6'/(k/, k”; w/’ (.l)”)

1 ] .fo d‘u' Al LN TSN LA
T 277-1).’_@ 7“:;_—‘(;0(1(, k; u, w P«)

l " d‘ll. alt ’ " 1
t 5 P T KK e — ) ()

Then, upon combining (42)-(44) according to (41), one readily obtains
Yk, k™ o, w”
= ¢k, k", 0, 0") — 'K, —k; —w’, w) — &' (—Kk, k"; w, —w")}
(45)
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Now, a trianglc-antisymmetrized FDT can be derived from Eq. (39) by first
observing from (39) and (40a) that

YK, -k —w, w) = -—ﬁi oK, - k; —o', w)

B? - Ok, —k; —u, - v)
_—PPJ_xdp,J_rc (w_mw_#;.v)

2
- %_ Ok, —k; —', w)

+

B oop it O, K" g, v)
472 br J—ac dyl J—ao dv ((UI — ,u)(UJ - K —;V—)

(46)
Similarly, one has from (39) and (40b) that

Y-k K w, )= — %’- 0k K'; w, — )

LB " Ok’ k" u, v)
e pp I dV ' d (0 — V)(w — u —v)

(47)

In order to bring (47) to a form comparable with (46), the Poincaré—Bertrand
theorem‘® has to bc invoked, leading to

Pk K e, 0f) - kK e, o) 4 B o K
B T i U e QK )
} 472 PP ’_x dp J‘_x dv (0" — W w — p — —)

(47a)

Thus the combination of Egs. (39), (46), and (47) according to (41), with
subsequent use of the parity rclations (40), yields the desired relation:

Pk, K o, w”) = —3B20K, kK"; o', ") (48)

in a form in which both sides arc manifestly triangle-antisymmetric. [We
note, however, that expressions figuring in Eq. (48), unlike those in (39), are
not causal with respect to («w’, w”).]

The path we followed in the above derivation circumvents, by exploiting
the appropriate symmetry properties, the problem of actually solving the
integral cquation (39). We now present an alternative method for the deriva-
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tion of (48), based on the explicit inversion of (39). Consider the “minus”
and “plus” projections of 63(k’, —k; —w’, w) with respect to w:

5K, ~k; —w,w) = [ dud(w — ok, —k; p o + @

~ 0

6.k, —k; —w', w) = J dp b (0" - p) 6(k', —k; —u, 0" = p)

so that

5K, —k; —o', ) = HE'IK, —k; —a'y ) + 3 (K, - -k; —w'y )} (49)

where
’ ’ PN . ] 7 _d,u' A [ AN "o
Z(k- k,_w,w)—;PJ_xw,'{‘—Mo(k, k’/“”w ,U,) (50)
Similarly,

6+, /7 _ka _(“I’ w) = é{él(k,’ ""k; —wl> w) - Z/ (k,: _ka '_wl’ (U)} (5])

Since 6_(k', —k; —w’, w) is a minus function of " and a plus function of
w”, it follows that

6 (K, —k; —o, w) = Hw', u] Ko, v] 6K, —K; —pp -v)  (52)

where, e.g.,
’ l bl d
Hw',p] =--P [ I o ()

) s —p

is the Hilbert transform operator. On the other hand, 6 (k’, —k; —o’, w) is
a plus function of both &’ and w”, so that

6./, —k; —o, w) = —HF[w', p] Flw",v] 6. K, ~k; —p,u +v) (53)
From (49), (51)-(53), one then obtains

¢k, --k; o, w) + 3 (K, —k; —o', w)

= '%[w,’ (J'] ‘%,[w”’ V]{é’(k,’ —k; Ty 14 _E‘ V) + Z, (kla —k; T, + V)}
(54)
&'k, —k; —o,w) = 3 (K, —k; —o’, w)

= =Ko, p] Hlw”, v’ k', —k; —p, u - v) -~ Z'(k', —k; —p, 4 v)}
(55)
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Thus
YK, =k —w', w) = Hw, p] Ko, v] K, —k; —p, g 1 v) (56)
which, of course, follows dircctly from (50) since

” ’ ” 1 [* d Al ’
oK,k —p ot )= P | =K,k —p, )

e @
One then derives similar relations for 6'(—k, k”; w, —w”). Then, let
J =6k, —k; —o, w) + 6'(—k, k"; 0, —”
K=Y (K, ~k -, o) + Y (~k K, ~o
so that in a short-hand notation
(11— +K)=20 &7
(1 +##)N—K)y=0 (58)
Exploiting the fact that ¥ is a plus function of both ' and w”, we also have
(1 —#HYY =29
Thus the general solution of Eq. (39),
—if —~ HH)Q = ¥
certainly can be cast in the form
B2Q = —2¥' + a(J + K) (59)

where a is an undetermined constant. This choice, however, becomes un-
ambiguous by demanding the triangle antisymmetry of Q to be satisfied by
the solution. Thus ¥’ should appear in its symmetrized form, ¥, only.
However, it is readily demonstrated that

¥ = H¥ — U K% (60)

which renders ¢ = 1. Then, (59) in conjunction with (60) is identical to (48).

2.5. FDT in Terms of Nonlinear Polarizabilities

The FDT (48) can be cast in yet anothcr form which features internal
response functions on the Lh.s. rather than the inconvenient external con-
ductivities. Thus, we introduce here the linear and nonlinear dielectric
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tensors €,q(k, w) and ea(k’,k’; o', »”) defined (for a homogeneous and
stationary system) by the constitutive relation

Da(ka w) = eaﬁ(ka w)/\blf(ka w)>(“ + Eaﬁ(k3 w)<Lﬂ(k’ w)>(2)
| _1_ " (2) i // / ”
T_Q,TTV;J_ aBy(k ’w)
X CEg(K', @) (EK", w)yM - -
k" =k — k/, w'=w—w

which connects the electric induction D(k, w) to the rotal average electric
field (E(k, w)>. The appropriate longitudinal projections are then given by

ek, w) = Kkpey(k, w)
5(2)(k', k"; o', @") == k ka'k”ei%)y(k', k" o', w")
Thus from our earlier nonlinear electrodynamic study,® it was found that
Ak, K" o, w") = igw’ + »”) @ (K, K" 0, w” (61)
where
ek, k"; o', w"

(2) ’ // I J— . b .
(K o o) = o i o) K £ K = w02

and (k/k’k") p'¥(k’, k"; w’, w") Is the response function which connects the
average second-order induced charge density response {p(k, w)>® to the
external charge perturbations g(k’, w’) g(k”, w”), namely

Gl ) = 53 () [T 5200, 1w, o) K, ) 6, )
(63)

Concerning the r.h.s. of (48), we introduce here the dynamical charge density
correlation function P defined by
P, K" o', ") (o' -+ @ — w) = (147 ¥ Kp(—w) pac(@’) pi(@”))®
(64)

One can then show that

Ok, K" o', w") =: —(ww'w"kk'k"y Pk',kK"; o', w” (65)
Thus Eqgs. (45), (48), (61), and (65) combine to yield the following alternative
form of the FDT:

77”(](', kll; (U,, w”) B nll(k,, _k; —(U—I,_(U_) B _"’_/,(_k, k”; w, - CU”)_

w'w” ww ww

. ﬁ ’ ", ’
i Pk, k"; o, »") (66)
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3. STATIC FLUCTUATION-DISSIPATION THEOREM
AND EQUILIBRIUM STATISTICAL MECHANICS

3.1. Static FDT

One of the most important ramifications of the conventional FDT is
its static form, which ultimately links the equilibrium pair correlation
function with the static dielectric function. In the present context, a similar
relation will provide a connection between the equilibrium three-particle
correlation function and the static quadratic response function. This section
is devoted to the derivation of this relation.

Our starting point is Eq. (66) which, upon integration over w’ and w”,

J“T’ _%ui J‘” _d_w_" 7'k, k"; o', 0")
e 2w ®
» do ? do” 7'k, —k; —o', w)
_ [ dw dw

J o 27 ) L 27 ww’

2 w'w’

R e

2w J_, 2w ww”

BZ
e B PR, K 1= 0, 5= 0) (67)
€o

yields an expression for the equal-time charge density correlation function.
However, the Ihs of (67) can be considerably simplified. To begin, we let

nll(k/’ kll; wl, wl/ . n/[(k’, k/’) _{_ ﬁ(kl, k”; wl, w/’) (68)
where 7"(K’, k") = 7"(k’,k"; w' = 0, w” = 0). Putting (68) back into the

dynamical FDT (66) and going to the static limit (0 = w” == 0), one
obtains

Lim Lim g 7 (K, K - 'K, —K) (KL KT — nll(f.h__k_:,)_i
w’H0 w”H0 w' . w"
= — Lim L1m w ;n(k w—ﬂ
w0 w”-» w w

’

ww waw”

Ak, —k; —o', @) A=k K 0, —o” |

fg ’ ", r no__ —
I:)Lr(r)140kkk,,P(k,k,w—0,w—0)—0 (69)
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The vanishing of the r.h.s. of (69) is assured by noting that for w’, w” small,
one has, for symmctry reasons,?

7"k’ k"; o', ") 9"k, k") - (6%n"jéw dw Nop @' w”

+ 3G 6w )0 w’?

_I‘ é(cz I//dwllﬁ)o U wl/) :T e (70)
so that the limit
k kl/
Lim le 7}( w @ )
w50 w " (U (J.)
,/ 7 . . ’ . 6}27 " 720
- ( A ) 4 Lim Lim \( i (i,, - (—— Z,g) ilg
Cu) cw” 0.0 @20 w0 a ow- w cw 0,0 W

must be bounded. P(k’,k"; " = 0, w” = 0) is also bounded for physical
reasons. Thus, except for the trivial case n” = 0, the vanishing of the lhs is
assured if, and only if,

7'k, k) = 7'(k, k) = 9"(—k, k) 71

We note that the Kalman-Pomcau expression for »” in the Vlasov approxima-
tion,'” which is reproduced in Appendix B [see Eq. (B.15)], indeed satisfies
this last symmetry rule.

Next, we turn to the calculation of the L.h.s. of (67). Let

op (7 dw’ T do” 9K, K o o)
IP‘ n 2,.7. J—ac 277. w/wn
dw P do” (K, -k —w', w)
I e et
” dw o do” (kK w, —w) 2
PP . 27_ J . _2Tf< CU(JJ” == 1 (7/_)

By repcated application of the Kramers-Kronig formula, one obtains

AL dw - dw” nl/(k/ k// (U w/; l
P - > e e ” ,
1P~’_m 21: .’ o 2"‘ u)w 477 (k, k ) (73(‘1)
and
3 dw' a0 d(l.)” /;( —k, __w,, w + )
’ A h —_—
P] J e 27‘. J_ . 2,”. w'(w” _ w )
£l d(u” 7]”(kl, —k; UJ', (U” . (U’)
> _—
PE ‘ x 2/: .[_m 277 (U,(u)” -— (U,)
1 ” ’ 1 ” ’ ” ,

8 Since 7"(k’, k; o', 0") = "k, K”; ~o’, —w”) [see Eq. (38)], the expression (70) cannot
contain terms like w’(éq"jéw’)y,o and w”(n"[¢9 g0 -
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Note, however, that the third integral of (72), as it stands, is not amenable to
similar simplification. However, by first invoking the Poincaré-Bertrand
theorem, one derives

7 do’ 1 do” n'(—k k" o + o, )

PP .‘,_E 2a | . 27 w’(w -i- w") i
. A d(u - X dwll 7]”( k kll I wll, wl/)
- —PP ' —» J » 27.‘, ll(w - w"

i "7 dw’ 0 dw” n'(-k, K 0 - o, ")
= —FP J J w 27 w'(0 — @)

o 2T

7KK = 0 (73¢)

in virtue of the Kramers-Kronig formula it satisfies. Conscquently, the
combination of (73a)—(73c) according to (72) yields
= —In"(k’, k") (74)

On the other hand, from (68), (71), and thc definition (72) of I, one can
write

_ * do' 7 dw” sy § ] 1 I )
L=pP [ S| S n WK e e
L7 e’ de” (KK o) o)
' .‘_-w 27 J_,,o 27 | w'w’
_ ﬁ(k/a _k; fw,, (l)) . ‘F](_ky k”; w, _(-‘U_”)_q
ww' ww” |
> do’ ™ dw" s 1 1
Z.‘_w_ﬁjw2 (K, k)! " ww —ww”g
N 'm do' = dw (7K, k" o, ")
Y, 27 ) o 3 w'w”

_ﬂﬂ“hﬂ%@_ﬁhh%u—dq
LL)(U’ ww"

fw d(U ; 0 d(l)” ; 7]”(k’ k”, w w//

'K, -k -, w) (kKT w, —) ) (75)

ww ww 5
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since, in any case,?

and terms like 7(w’, w")jw’w” are nonsingular.
Thus from Egs. (67), (74), and (75), onc readily obtains the static FDT:
"K', K") - (-Bekk’k") P(K', K" 1 =0, 1 = 0) (76)
or

(pup kP dite = —(QVekk'k"IB) n"(K', )

It is an easy matter to generalize the previous study to a two-component
plasma having N dynamical electrons (each of mass m and charge e) and
N/Z dynamical ions (each of mess M and charge —Ze). Letting

R(r, 1) = —Ze %Z Sr — X,(1)) (77)

£-<1
where R(r, t) is the ion microscopic charge density, onc can show that the
full static FDT is
Upw + RIposr - Ra)powr — Ry = —(@Vekk'k"1B2) 7"(K', k")
(78)
where
70, K) = 7k, K + ik, K)

3.2. Dielectric Description of Pair and Triplet Correlation Functions

Our final task consists of expressing the lhs of (78) in terms of the well-
known pair and triplet correlations [defined by (80) below] of equilibrium

? In the light of (71), Eq. (69) can also be written in the form

' I 1
7'(K’, k) lim lim : — - !

w0 w0 { w'w’ ww ww”

— - fim lim ‘( A, K w, o) ARk —ew) kK, —w”))
@50 w70 {

8 )
L KK @ = 0.0 — 0)]
avegrk ¢ @ @ i

N ’ ”
w w ww ww

Clearly, the boundedness of the rhs requires that the lhs vanish identically.
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statistical mechanics. We introduce here a variety of one-, two-, and three-
particle distribution functions, ¢.g.,

F) =N [~ [ @Oa2-dNdl - dN/Z

N-1:(N/2)

FiPy) = (N/Z) f J QO J1 - dN dll - dN|Z

N+(N/z)-1

GooXy s Py 5 Xo s Po) = N(N — 1) J J QO g3 - 4N dI - dN|Z

N-2+(N/Z}

Goi(Xy, Py 5 X1, Py) = (NYZ) J‘ J QO 42 - dN dll -+ dN|Z,

NTZ24(Nj2)
Hypo(X1, P15 X2 5 P s X3, Pa)
= NN — DN — 2) J" J Q9 4 - AN dI - dNjZ

N-3+(N/Z)

(79
etc., where, in an obvious notation,

d2 = d*x, d%,,  dll = &X; Py, cte.
so that, e.g.,
N-1+(N/Z)

actually implies 6{N — 1 -- (N/Z)] integrations. The pair and triplet cor-
relations (Ursell functions) g.,(12)[=g..(] X; — X» )], gesl1, 1), hee(l, 2, 3),
h..i(1, 2, D), etc., which are of interest here, are then defined through relations
like

Gce(xl E] pl 5 x2 ’ p2) = Fe(pl) Fe(pz){l + gee(lz)}

G (%1, p1; Xy, P -= Fo(py) F(PH{L + g.41, D)}
(80)
Heee(xl 3 pl > x2 ’ p?_ s x3 ’ p3)

o= e(pl) Fe(p?) Fe(p‘!){l s gee(lz) ':‘ gee(13) }— gee(23) "{‘ heee(123)}
Hooi(X1, P15 X2, P25 X1, Py)
= F,(p) Fo(p2) FP){1 + gee(1, 2) + i1, 1) + 822, 1) -1 heei(1, 2, D)}
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etc. We now proceed to the calculation of the lhs of (78). Considering first
the pure electron correlation, we have

/ (
SPKkP—k'P- k">10)0

= ¢ Y (exp(—ik - x;) exp(ik’ - x;) exp(ik” - x O

i
~ Net + e Y (Cexplik + (x; — x)D® + <exp[—ik’ * (%, — %)
e
-+ {exp[—ik" - (x; - XJ-)D(O)}
+ e? Z exp(--ik * x;) exp(ik’ - x;) exp(ik” * Xg)>(0)

idas

i ASFE
= Ne? - ¢ ’ | dld2 G,(X;, Pr ; X2, P){explik * (x; -+ X,)]
+ exp[—iK' * (% — xp)] + exp[-ik" * (x1 == x,)}
e [[[d1d2d3 Hexy, py5 %o Pos Xa s Po)
x exp(—ik - x;) exp(ik’ * X,) exp(ik” * x3) (81)
Then, upon eliminating G, and H,,, in favor of g,, and 4,,, through (80),
Eq. (81) ultimately integrates to
{pppeacep-ir)'® = Ne® + N%e¥(Sy o + Sig - o) + N30y (OiceOk”,0
+ ’lNes[ gce(k) T‘ gee(k,) '{' gec(k”)] + ’1N2€3[ gee(k/) Sk',k
f_ gee(k”) 8k'.0 + gee(k,) 81('.0] + nzNeahece(k,, k”) (823')

where g, (k) is the Fouricr transform of g,.(' X; — X, ;) and #n is the electron
number density. Similarly, one finds that

{RyR_y R HO
= — 7Z2Ne* — ZN2%(8, ¢ -+ Oy'.0 + Su70)
— N3e38; 00k’ 00k".0 — ZnNe®[ g (k) + gk - g:(k")]
— nN2e3(g, (k") 8,7 o + gis(K") v o + gii(K") Op o] — 2N (k', K”)
(82b)
and similar relations resulting from the interchange of k, k', and k”. Thus,

the full ion- clectron three-body density corrclation function is obtained by
adding cquations like (82).
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One ultimately obtains
<(Pk N Rk)(P—k’ T R—k')(P—k" - R—k')>(m

= Ne*(1 — Z%) + naNe* ) {[geo!) — galD] — Zlgall) — &)}

1=K,k k"
-+ n2Ne*h(k’, k") (83)
where

h(k” k”) == heee(k" k”) - heei(kl’ k”) T hez’e(k,y k”) - hiee(kl3 k”)
+ hoi(K', K") -+ AR, K™) + hyo(K, K7) - bk, k7)) (83a)

Now, from our earlier linear FDT study, it was found that the pair
correlation function satisfies!?’

AL geoll) — 8lD)] — nZ[ gl]) — D))
= (eol2/Bne?) Ref[a () — Za(DYe)} — (1 — 2?) (84)

where «, and «; are the electron and ion lincar polarizabilities, and
e) = 1 + a(l) + ()

Then Eqgs. (78), (83), and (84) can be contracted into the relation for the
ternary correlation function:

| ekk'k”

n*h(k’, k") = — - ne’p? 7"(k’, k")
_ €of® 5%(/) - Zo(D) y -
Re T B U (D m 201 — Z%)  (85)

Equation (85) is the main statement of the present section. Its importance
lies in that the high-order ternary correlation function can be inferred from
the easily accessible quadratic polarization, whose evaluation can be restricted
to the consideration of processes of much lower order than the others con-
tributing to the ternary correlation.

The order-raising property of the static FDT can be most readily
visualized by considering % in the lowest-order (Vlasov) approximation (for
details, see Appendix B):

25_05/\5/(” eyt "o _1_—_ ZZ——
~ Taep TR S e @)

x (k) -= Bne?/k?, x{k) = ZBne*k?, k) =1 (1 4 Z) Bne*k?
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so that (85) becomes

PRy oy Y ____l__ . ._I_ ot
neh(k', k) = (1 - 2% YUY € “;k T 2|
2 ! ( alk’) o(k") + « alk’
= (1 -- 2% (k) <) kY {2a(k) a(k’) a(k”) + a(k) «(k)
k) kY + alk") ()} (86)

Since, to this order, » — O(e®n), it then follows that & = O(e?), which is the
expected result. If now x and 7 are calculated beyond the Vlasov approxima-
tion to order O, (€%n)” ¢*?}, then A will evidently be detcrmined to order
O{2 ()" 22+0)),

For the case of a pure electron plasma where the N/Z ions are assumed
to be nailed down, Eq. (85) is altered insofar as one sets

Z =2 0, ufk) = 0 = k', k"), g(k) = go.(k), and h(K’, k") — ho.o(K', k).

The case of the electron—proton plasma is rather special: for Z = 1, Eq. (86)
reveals that A(k’, k") = 0 and there are no triplet correlations [in the sense
defined by (83a)] to O(eY).

3.3. Ternary Correlation Function: Conclusions and Comparisons

Equations (85) and (86) can be regarded in two different ways: First, if
the response functions are given, then these equations are used for the
calculation of the ternary correlation function. The sccond interpretation
follows by eliminating € with the aid of the linear FDT in favor of g and then
constructing a cluster expansion for h in terms of the pair correlation
function g.

Consider first Eq. (86) for an electron plasma. Invoking the relation

1/e(k) = 1 - ng(k) (87)
valid in the Vlasov approximation, one immediately verifies that

Wk, k") = g(k') g(k") + g(k”) g(k) -i- g(k) g(k') -+ ng(k') g(k") g(k)  (88)

This is the Fourier transform of the lowest-order Mayer cluster expansion
for the ternary correlation function derived by Salpeter® by equilibrium
statistical mechanics and by O’Neil and Rostoker®, and by Lic and
Ichikawal® solving the BBGKY hierarchy equations.

With ion dynamics included, the situation is somecwhat more
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complicated. The four corrclation functions appearing in (84) can be ex-
pressed as

8ee  8os Lo = Gie = 28y Gu — 2%, (89)
and
lje(k) = 1 -~ (I — Z) ngy(k) (90)

Then the relation equivalent to (88) becomes

A, K") = (1 -~ Z3)(1 + Z)* { go(k") go(k") i go(k") go(K) -~ go(K) golK")
+ (1 + Z) ngo(k') golk") go(k)} on
However, A(k’, k") does not have an immediate physical meaning: it is
rclated to the physical correlations by (83a). On the other hand, the triplet
correlations between specific groups of particles like 4,,, and 4,,; are expan-
dable in Mayer-type clusters, similar to (88). These expansions, illustrated

by their corresponding cluster diagrams,!® are obvious generalizations of
Salpeter’s'® formulation and are listed below:

hooo K, K = 3 g() gy + n(1 - Z%) g(k') g(k") g(k)

L kKR

A Ao AA

heez(k’ k”) + heze(k k”) N hwe(kl k”
=(Z*—22) Y a)gl) - 3(Z% — Z) ng(k') glk") glk)

L1'=k,k’ k"

B - AL AA

hioK, k”) - hia(K k”) 4+ hy(K, k")
-2 (22 - 2279 Z g gy + 3(Z — Z%) ng(k’) g(k") g(k)

Oy NN L+ ArA

10 The diagrams arc conventional Mayer cluster diagrams in configuration space. Filled
vertices represent clectrons and hollow vertices represent ions. Bonds between vertices 1
and 2 are associated with ¢g(12). Triple products of Fourier transforms appcar as integrals
over a dummy particle carrying a density factor » (if it is an clectron) or N/Z (if it is
an ion).
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hik', k) = Z2 F g() g(1) -i- (2% - Z°) ng(k") g(K") g(k)

1.1
2
b, - AL AA
O O
When thesc terms are combined according to the rules of (83a), the result is
identical to (91).
In the rest of this section, we confine our attention to an electron plasma.
If one goes beyond the lowest order approximation, higher-order contribu-
tions to & emerge both from higher-order corrections to g and %. The form
assumed by 7 in the Vlasov approximation suggests the introduction of the
collisional correction 6(k’, k") as follows:

Bene® 1

T = T g w @ ) @)

[1 -+ 3K, k)]

We also sct
gk) = golk) + gk),  I'(k) = g(k)/[1 + ngy(k)]

where g, is the Debye pair correlation function and g (or I') is a collisional
correction. Then, with the aid of (87), one can rewrite (85) (with Z = 0) as

hk', k") =} g() g(I) + ng(k) g(k') g(k") -+ Y. ng() g(I') I'(")

Ly [

+ IZ, g Iy — Y ng) ()T + ; (1/m) I')

L

— Y. I'(¢y I (") — aI(k) T’y T(k")
1t

-+ Ok, k)1 + ng(k’) — nI'(K')H1 + ng(k") — nI'(k")}
{1 =+ ngtk) — nl'(k)}

displaying modifications both in the cluster structure and due to the new
units building up individual clusters.

4. CONCLUSIONS AND REMARKS

In this paper, we have established what relation prevails between the
quadratic plasma conductivities, diclectric functions, and the response
functions on the one hand, and equilibrium three-point density and current
correlations on the other. In addition to the inference drawn concerning
the triplet correlation function, discussed in the previous section, there are

822/6/2/3~-4
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further implications of the theorem. Whenever the calculation of scattering
cross sections, IFokker-Planck coefficients, and like quantities describing the
interaction of incident electromagnetic waves or particle beams with an
equilibrium plasma is contemplated beyond the lowest-order Born-type
approximation,!-'% an expansion in the perturbing clectric field (due to the
wave or to the particles) ensues with two-, three-, n-point equilibrium cor-
relation functions appearing as expansion cocfficients. That the lowest-order
coefficients can be explained entirely in terms of the dielectric function is by
now well-established; the present theorem tells us how a similar procedure
can be performed for the next term in the expansion (for the details of the
test-particle problem, see Ref. 12).

The above observation indicates in which direction one could look for
direct experimental verification of the results derived in this paper. Evidently,
independent measurements of the two physical quantitics linked by the
theorem-the quadratic conductivity and the three-point correlation func-
tion—-would be required. The first one has been a long-standing experimental
program for semiconductor plasmas.® In the case of gascous plasmas, the
difficulty of generating genuine equilibrium plasmas, especially under the
influence of strong perturbations, is, at the present time, a major experimental
obstacle. As far as the second objective is concerned, the most promising
method to gain information about the triplet corrclation function, seems to
be—in view of the discussion presented in the above paragraph—the mecasure-
ment of incoherent scattering crosssections for high-intensity electromagnetic
waves. No detailed theoretical understanding or experimental observation
of this process seems to exist, however, at the present time.

APPENDIX A. DERIVATION OF THE
POISSON BRACKET IDENTITY

First, we observe that
<[P-k’(0), j—k”B(TI - T”) jk-/(”',)]>(0)

N o {0)
- g:l <C(f)x:((00)) Cp:(o) lj ) B(T N T") jk)l(‘r,)}>

\Op

= <(pl;— :(—:(E)(;) A G jkv(Tl)g>m)

= ek Y [ dxdp 2% 2 25 UXBUK * X e’ = 7°) Jol7)
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Q(O)

= ik, Y, | dx dp el X0 osls’ ~ ) jolr) S

isee Eq. (5)]
= —iepk, Z j dx dp £290,(0) {explik’ * x,(0)]} jyp(7" — 7") Jir(')

=Bk wal0) joka(7 — ) Jul 7Y
Hence expansion of the Poisson bracket yiclds
p—(0), jorralr” — T TP = —iBky(fosral0) jorng(T" = 7") i (')
— Lp-x10), i () josral7 — 77O

APPENDIX B. STATIC NONLINEAR DIELECTRIC FUNCTION
FOR A YLASOV PLASMA

We consider here an ion-electron Viasov plasma consisting of N electrons
(each of mass m, and charge — | e{) and N/Z ions (each of mass m; and
charge Z | e |). The Vlasov equations for the one-particle ion and elcctron
distribution functions are (x = e, i)

OF(r, t;v) | 7|€

LBV v SR v+ 2 B, 1) i-(g_vii) —0 (B.I)
where (E) is the average macroscopic held, Z, = —1l,and Z; = Z, with the
perturbation expansion

Fy(r, 1;v) = FOw) -+ F¥, 1, v) + F(Z)(r 5v) + - (B.2)
CE(r, 1)) = (E(r, 1))® -+ <E@r, )® + - (B.3)

about the Maxwellian state characterized by
R = MEL R e () e

substituted into (B.1) and one sees that the result can be split into two
equations for the first- and second-order distribution functions F*’ and F®.
Upon taking Fourier transforms of these last two equations, one obtains

iZ, e, Eko)Y - eFOv)/ov

(1) Cw) —
Fa (k5 w, V) - mu w—k‘v (BS)
. 2) , 700 o
FO%, w:v) = — '12771( el <E(kw()u> - koFav (v)/ev
_iZ)e] | , CE(K", w")p® - aFOK, o5 vy
m, 2_%szd w—Kk-*v
(B.6)

where k" = k — k',
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Let us consider the electron gas. The second-order, average current
density, which is of interest here, is readily formed from (B.5) and (B.6) to be:

Gaka)y® = — e [ d o FO(k, w3 v)

| 5 p(0) .
= = L Bk [ e, S

" 4"er 2 Z J do’ (E (K, o' )>® CEK", o))

Wy B (B ROy, o eFOW)ev
J w—kvicry, o —kK' v ' fy, o —K v}
(B.7)

Upon comparing (B.7) with Ohm’s law

k)™ = 0k, @) Ex(ka))® - (1/27¥) 3. [ do’ o0, K75 0, )

X ELK, o))V CE(K", w")N (B.8)
one finds that
L. A0y 7
e (k) = — L1l | v, —(f”_(vl%/fiv" (B9)

and

{e) ’ 1/ r ”
Ta(K', K @', ")

|e 3 [ R eFOW)er, | @ SR, |
T 2mz2 ] w—k'viéo, o —k"v ' v, o —Kk v
(B.10)

From our earlier electrodynamic study,'® we found that

dOK, K" o, o) = jele’ + w”) K, K o, w”) (B.11)

Then upon eliminating o.7), between (B.10) and (B.11) in favor of ¢!, , and

taking the longitudinal projection of the result, one ultimatcly obtains the
symmetrized (with respect to prime-double-prime interchange) relation

“ - . ” «{0)
©) (Lt T o ije? . 1 3,.i_l<_ ok jov.
en(k, KT o, o) = 2eomezk l dv — kv (k v — Ky
VL cFé"’/ova
' v w — Kk
3 . ( ~(0)
= - —lﬁif_l/ | (13v 1 oo \kl . C— _[‘ll__(k " )
2egm kk'K" w--K*v ov w k" -
o 0) 3,/
pie- 2 B )
-k ov o — k' *v (B.12)
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Hence in the static (0’ — 0, ” — 0) limit,

(e) ’ ", L ”o _ i’7/82 ! € |3
6,’\/L(k ) k , W — O, w = 0) — 2€0kk'k"
(B.13)
/I(kl kl/) J— Bz | e i3 ]
Ml R = e kk 'k’ (k) e(k') (k")
For the ion gas, one can similarly show that
v b B 7 e n 1
T K) = — = ) k) <) (B.14)
Hence the complete expression is
. 2 2,3
7"k, k") == (I =Z9f e 1 (B.15)

2eki k" (k) e(k’) (k")
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